
 

       The Principle of Strong Mathematical Induction (2
nd

 Principle) 
 

  Let  a and b be fixed positive integers such that  a    b,  and  
             let P(n)  be a predicate for all integers n    a . 

   IF 
        1)  P(a), P(a+1), . . . , P(b)  are all true,  and 
        2)  For every integer  k    b,  

                If  P(m) is true for every integer  m  such that  a    m    k , 
                                                                            then P( k+1 ) is true, 
   THEN 
       P(n) is true for every integer  n  such that  n    a . 

 
 
 
 
     Strong Mathematical Induction (in Diagram Form) with  a = 1 : 
 
   Given an infinite list of statements:   P 1 , P 2 , P 3 , P 4 ,   .  .  .   
  
    IF we prove that: 

          These are true,   and  that,  for all integers  k    b,     (so  k+1   b+1) 
 

                              if  all the P m , with 1   m    k ,        

                                                                         are true,       then P k+1  is true,                                                                    
                                                                                                                                                                           
                   . . . 
 
                                 . . .             . . .        . . .        
 
          P 1 , P 2 , . . . ,  P b , P b+1 , . . . , P m ,  . . . , P k–1 , P k , P k+1 ,  .  .  .   
 
 
  THEN we can logically conclude that  ALL of these statements are true. 
 
                                              .  .  .                           .  .  . 
 
            P 1 , P 2 , P 3 , P 4 ,   .  .  .  , P k–1 , P k ,  P k+1 ,  .  .  .   
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              The Design for Proofs using  the Principle of Strong Mathematical Induction  (2nd Principle)     
                                     ( a  represents a particular integer.) 
 

To Prove:   For every integer  n  such that  n  a,  predicate  P(n) .  
 

    Proof:  (by Strong Mathematical Induction) 
 

[ Basis Step: Show that P(n) is true when n = a, a + 1, a + 2, …, b  for an appropriate number  b  a. ]  

 

           . . .     [ See below for a format for the Basis Step. ]               [ End of Inductive Step ] 
  

 [ Inductive Step:  

        To Prove: For every integer  k    b,  

                    if  P(m) is true for every integer  m  such that  a    m    k , then P( k+1 ) is true.  ]  
 

   Let  k  be any integer such that  k    b . 
  

   Suppose P(m) , for every integer  m  such that  a    m     k.        [This is the Inductive Hypothesis.]  
 

                         [ NTS: P(k+1) ]   
 

             . . . ( proof statements come here, 
                     including statements that apply the Inductive Hypothesis for various integers  t  as needed, 
                     that is, statements similar to the following :   
 

                          "Since   a    t     k ,  P( t ) ,  by the Inductive Hypothesis." 

                                                                  [ Note: a    t   k  needs to be proved first! ]  ) 

                                    . . . 
  

            P(k+1) .             
 

  For every integer  k  such that  k  b ,   if   P(m) ,  for every integer   m   

                              such that  a    m    k,  then  P( k+1 ), by Direct Proof.  [ End of Inductive Step ] 
 

   P(n)  for every integer  n  such that   n    a,  by Strong Mathematical Induction.       QED        
 

                                            A Format for the Basis Step 
   

Let n  =  a;      . . .   (calculations with  n = a) . . . ;                For n = a,       P(n) . 

Let n  =  a + 1;  . . . (calculations with  n = a + 1) . . . ;          For n = a + 1, P(n) . 

Let n  =  a + 2;  . . . (calculations with  n = a + 2) . . . ;          For n = a + 2, P(n) . 
    .  .  .                            .   .   .                                                      .  .  .   

Let n  =  b;    . . .     (calculations with  n = b) . . . ;                For n = b,       P(b) .    [ End of Basis Step ] 

  
Notes: 
 

   1)  The number of initial cases of the predicate that need to be verified in the Basis Step depends  
         on the nature of the predicate P(n) .   Sometimes there will be only one initial case to verify. 
         Usually, however, there are two or more cases. The  number of cases that need to be verified in  
         the Basis Step often equals the number of previous cases ( P(k), P(k-1), P(k-2), etc. ) that  
         need to be accessed in order to prove  P(k+1) .  
 

   2) The supposition " Suppose that P(m) is true for every integer  m  such that  a    m    k "  
        is how mathematicians say  
               "Suppose that P(k) and all of the cases of the predicate before P(k) are true." 
 

        This supposition is called the Inductive Hypothesis.  When justifying a conclusion by this supposition,  

        you indicate this by saying:   “  Such-and-such is true, by the Inductive Hypothesis. “ 
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        ( Pay attention to the different ways that the Inductive Hypothesis is worded in two principles of  
           Mathematical Induction ! ) 
  

   3)  Before you can apply the Inductive Hypothesis to conclude that P( t ) is true, for a particular value 

        of  t ,  you must first prove that  a    t    k . 
 
 
                            Example Proofs by Strong Mathematical Induction  
                       
 
The first example proof is a proof of a conjecture dealing with a particular sequence of real numbers. 
First, a word about a method of defining a sequence of real numbers that may be new to you.     
 
 
Some sequences ( dn ) n = 1, 2, 3, …  are defined recursively, that is, after a certain point, each term is  
defined by some formula involving previous terms of the sequence.   
 
Strong Mathematical Induction is useful for proving conjectures about such recursively defined  
(also called "inductively defined")  sequences . 
 
          Define the sequence  ( dn ) n = 1, 2, 3, …  as follows: 
 

Define the first  term  as  d1  =  
10

9
 .         Define the second  term   d2  =  

11

10
 . 

 

 For all integers  k    3 ,   define   dk    by the formula,  dk  =   d( k – 1 )    d( k – 2 )  . 

 

Thus,  d3   =  d2  d1   =   
11

9

10

9

11

10
     and    d4  =  d3  d2   =   

121

90

11

10

11

9
  .   And so on, . . .   

         

This process defines the complete sequence   d1 , d2 , d3 , d4 , . . .  
 
In a proof of a conjecture about this sequence ( dn )  (and other such recursively defined sequences), 

before you can apply the defining formula to conclude that  d t   =   d( t – 1 )    d( t – 2 )   for a particular 

value of  t ,  you must first  prove  that   t    3  so that we know that the formula applies.    

 
 
 
 An Example proof of a conjecture about this sequence using Strong Mathematical Induction 
 

     [ Recall,     d1  =  
10

9
 .     d2  =  

11

10
 .   For all integers  k    3 ,    dk   =  d( k – 1 )    d( k – 2 )  . ] 

 

To Prove:   For every integer  n   1 ,  dn  is such that    0   <  dn  <  1  .  
 

    Proof:  [by Strong Mathematical Induction]        [ Here, P(n) is the predicate:  “ 0   <  dn  <   1 “ .  ] 

 

    [ Basis Step:  To Prove:  For  n = 1  and  n = 2 ,   0   <  dn  <  1 .   ]   [ Here,   a = 1  and   b = 2 ] 
 

    [ Note:  Since the definition  of  dk , for  k  3, depends on terms in the sequence two (2) positions back, 

                         we will need to verify  two (2)  initial cases of the predicate in the Basis Step.   

                Also, since the formula definition for  dk   requires k  3,  we will need to verify P(n) for  
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                n = 1  and   for  n = 2 , so that when we  set  k    2 in the Inductive Step, we will have that  

                ( k+1 )   3   and we will be able to apply the defining formula  to  d( k + 1 )  .  ] 
 

       Let  n  =  1 .            dn  =   d1  =   
10

9
   and    0  <   

10

9
   <  1 .    For   n  =  1,     0  <   dn   <  1 .  

     

       Let  n  =  2 .            dn  =   d2  =   
11

10
   and    0  <   

11

10
   <  1 .    For   n  =  2,   0  <  dn   <  1  .   

                                                                                                                          [ End of Basis Step ] 
                                                                                                                             

      [Inductive Step:   

            To Prove:   For every integer  k    2,  

           if  0   <  d m  <  1  for every integer  m  such that  1    m    k ,   then  0   <  d k+1  <  1  .  ]  

    

       Let  k  be any integer such that  k    2 .  
 

             [Inductive Hypothesis:  “Suppose P(m) , for every integer  m  such that  a    m    k. ” ] 
 
 

     Suppose that   0  <   dm  <  1 ,  for every integer m such that   1    m    k .    [ The I. H. ] 
      

                                [ We need to prove  P(k+1), that is,  “ 0  <  d( k + 1 )  <  1 “ ] 
 

      Since  k    2,   ( k+1 )    3   and so,   3    ( k+1 ).      
 

      Since   ( k+1 )    3 ,   d( k + 1 )   =  ( d k     d( k – 1 ) ) ,  by the defining formula of the sequence. 
 
 
 

      Since    3    ( k+1 ) ,   ( 3 – 2 )      ( k + 1 ) – 2 .         1      k – 1     k  . 
 

              Since  1    k – 1     k ,   0  <    d( k – 1 )    <   1 ,  by the Inductive Hypothesis . 
 

              Since  1    k     k ,    0  <   d k    <   1 ,   by the Inductive Hypothesis . 
 

      Since   0  <   d( k – 1 )   <   1 ,     (  d k     0 )    <    ( d k     d( k – 1 ) )    <     d k    1   =   d k  .  
     

             0   <   ( d k     d( k – 1 ) )    <     d k   <   1 ,   and so, by substitution   . 

             0   <   ( d k     d( k – 1 ) )    <   1 ,  by transitivity of  “<  ” . 
 

             0   <   d( k + 1 )   <   1   by substitution, since  d( k + 1 )   =  ( d k     d( k – 1 ) ) .       [  P(k+1)  ]  
 

 For every integer  k    2 ,  if    0  <  d m  <  1,  for every integer  m  such that  1    m    k , 

                          then   0  < d ( k+1)   <   1 ,   by Direct Proof  . 

                                              [ End of Inductive Step ] 
 

        0  <   dn  <  1   for every integer  n    1 ,  by Strong Mathematical Induction.     

 
         Q E D 
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                                Another Example Proof  by Strong Mathematical Induction 
 

 
Theorem 4.3.4: ( p. 138 ):   Every positive integer greater than 1 has at least one prime divisor; 
 
 

                that is, for every integer  n > 1, there exists a prime number  p  such that   p | n . 
 

            [ We prove equivalently that the predicate is true for every integer  n    2. ] 

 
   Proof: [by Strong Mathematical Induction] 
 
      [ Here, P(n) is the predicate:   
                “there exists a prime number  p  such that   p | n ,”   or equivalently, 
                “there exists a prime number  q  such that   q | n .” ] 
 

     [We use Strong Mathematical Induction to prove “P(n) is true for every integer  n    2 “ ,  

        which is equivalent to the statement  “P(n) is true for every integer  n  >  1 “. ] 
 
  [ Basis Step: To Prove: For  n = 2, there exists a prime number p such that p | 2 . ]  [ Here, a = 2  &  b = 2.]    
 
       Let  n  =  2 . 
 

          The integer  2  is a prime number  and  n  =  2  =  21 ,  so  2  |  n . 

       For n = 2,  n is divisible by the prime number  2 .    
 

        For  n  =  2,  there exists a prime number  p  such that  p | n .        [ Here,  p  =  2. ] 
 

 

           [ End of Basis Step.  Here, since only one initial case needs to be verified,  b  =  a  =  2 . ] 
 
      [ Inductive Step:    

            To Prove:   For every integer  k    2,  

               if,  for every integer  m  such that  2    m    k ,   
                                there exists a prime number  q  such that  q | m ,  
                    then there exists a prime number  p  such that  p |  ( k + 1 ) . ]   
 

    Let  k  be any integer such that  k    2 . 
 

 

     Suppose that, for every integer m such that  2    m    k,  
                                      there exists a prime number  q  such that  q | m .   [Inductive Hypothesis] 
 
 

       [ We need to prove P(k+1), that is, prove  “ k+1  is divisible by some prime number p “. ] 
 
 

           Now,   k+1  is prime  or  k+1 is not prime.         [There are two possibilities.] 
 
       Case 1:  (  ( k+1 ) is a prime number. )      
  

         Suppose that  k+1  is a prime number. 
 

         The integer  k+1  is a prime number  and  k+1  =  ( k+1 )  ( 1 ) ,   so  ( k+1 )  |  ( k+1 ) . 
 

         There exists a prime number p such that  p | ( k+1 )  in Case 1.      [ Here,  p  =  k+1 . ] 
                                                [ End of Case 1 ] 
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      Case 2:  (  ( k+1 ) is not a prime number. )  
 
         Suppose that  k+1  is not a prime number. 
  

         Because the integer  k+1  is not a prime number,   there exist integers  r  and  s   such that   
 

                 ( k+1 )  =  r s    and    1  <   r   <   ( k+1 )       and      1  <   s   <   ( k+1 ) .   

 

                       r  |  ( k+1 ) ,   since  ( k+1 )  =  r s  and  s  is an integer.     
 

          Since 1  <   r  <   ( k+1 ) ,   we conclude that   2      r      k .  

 

[ Recall that we just proved that  2      r      k, which we needed in order to apply the Inductive hypothesis. ] 
 

 By the Inductive Hypothesis,  since   2     r     k ,   
                                there exists a prime number  p  such that    p  |  r . 
 
    Thus,     p  |  r    and    r  |  ( k+1 ) . 
 

    p  |  ( k+1 )  ,  by the transitivity of divisibility ,  and   p  is a prime number . 
 

 There exists a prime number p such that  p | ( k+1 )  in Case 2. 
                      [ End of Case 2 ] 
 

 There exists a prime number p such that  p | ( k+1 ) ,  in general.                       [ P(k+1) ] 
 

 For every integer  k  such that  k    2 ,  

         if ,  

           for every integer   m   such that   2    m    k,  there exists a prime  q  such that  q | m , 
         then 
                     there exists a prime  p  such that  p | ( k+1 ) ,  by Direct Proof . 
 
                                       [ End of Inductive Step ] 
 

  For every integer  n  >  1  ( that is, for every integer  n    2 ), 

         there exists a prime number  p  such that  p | n  ,  by Strong Mathematical Induction.                                             
 
                                                      Q E D 
     
 
 

 


